Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 626(7998): 294-299, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38326595

RESUMO

An essential ingredient for the production of Majorana fermions for use in quantum computing is topological superconductivity1,2. As bulk topological superconductors remain elusive, the most promising approaches exploit proximity-induced superconductivity3, making systems fragile and difficult to realize4-7. Due to their intrinsic topology8, Weyl semimetals are also potential candidates1,2, but have always been connected with bulk superconductivity, leaving the possibility of intrinsic superconductivity of their topological surface states, the Fermi arcs, practically without attention, even from the theory side. Here, by means of angle-resolved photoemission spectroscopy and ab initio calculations, we identify topological Fermi arcs on two opposing surfaces of the non-centrosymmetric Weyl material trigonal PtBi2 (ref. 9). We show these states become superconducting at temperatures around 10 K. Remarkably, the corresponding coherence peaks appear as the strongest and sharpest excitations ever detected by photoemission from solids. Our findings indicate that superconductivity in PtBi2 can occur exclusively at the surface, rendering it a possible platform to host Majorana modes in intrinsically topological superconductor-normal metal-superconductor Josephson junctions.

2.
Proc Natl Acad Sci U S A ; 118(42)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34649995

RESUMO

It is commonly believed that the energy bands of typical collinear antiferromagnets (AFs), which have zero net magnetization, are Kramers spin-degenerate. Kramers nondegeneracy is usually associated with a global time-reversal symmetry breaking (e.g., via ferromagnetism) or with a combination of spin-orbit interaction and broken spatial inversion symmetry. Recently, another type of spin splitting was demonstrated to emerge in some collinear magnets that are fully spin compensated by symmetry, nonrelativistic, and not even necessarily noncentrosymmetric. These materials feature nonzero spin density staggered in real space as seen in traditional AFs but also spin splitting in momentum space, generally seen only in ferromagnets. This results in a combination of materials characteristics typical of both ferromagnets and AFs. Here, we discuss this recently discovered class with application to a well-known semiconductor, FeSb2, and predict that with certain alloying, it becomes magnetic and metallic and features the aforementioned magnetic dualism. The calculated energy bands split antisymmetrically with respect to spin-degenerate nodal surfaces rather than nodal points, as in the case of spin-orbit splitting. The combination of a large (0.2-eV) spin splitting, compensated net magnetization with metallic ground state, and a specific magnetic easy axis generates a large anomalous Hall conductivity (∼150 S/cm) and a sizable magnetooptical Kerr effect, all deemed to be hallmarks of nonzero net magnetization. We identify a large contribution to the anomalous response originating from the spin-orbit interaction gapped anti-Kramers nodal surfaces, a mechanism distinct from the nodal lines and Weyl points in ferromagnets.

3.
Chemistry ; 26(67): 15549-15557, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32490557

RESUMO

Topological insulators (TIs) gained high interest due to their protected electronic surface states that allow dissipation-free electron and information transport. In consequence, TIs are recommended as materials for spintronics and quantum computing. Yet, the number of well-characterized TIs is rather limited. To contribute to this field of research, we focused on new bismuth-based subiodides and recently succeeded in synthesizing a new compound Bi12 Rh3 Sn3 I9 , which is structurally closely related to Bi14 Rh3 I9 - a stable, layered material. In fact, Bi14 Rh3 I9 is the first experimentally supported weak 3D TI. Both structures are composed of well-defined intermetallic layers of ∞ 2 [(Bi4 Rh)3 I]2+ with topologically protected electronic edge-states. The fundamental difference between Bi14 Rh3 I9 and Bi12 Rh3 Sn3 I9 lies in the composition and the arrangement of the anionic spacer. While the intermetallic 2D TI layers in Bi14 Rh3 I9 are isolated by ∞ 1 [Bi2 I8 ]2- chains, the isoelectronic substitution of bismuth(III) with tin(II) leads to ∞ 2 [Sn3 I8 ]2- layers as anionic spacers. First transport experiments support the 2D character of this material class and revealed metallic conductivity.

4.
Nat Commun ; 10(1): 3424, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31366883

RESUMO

Spectroscopic detection of Dirac and Weyl fermions in real materials is vital for both, promising applications and fundamental bridge between high-energy and condensed-matter physics. While the presence of Dirac and noncentrosymmetric Weyl fermions is well established in many materials, the magnetic Weyl semimetals still escape direct experimental detection. In order to find a time-reversal symmetry breaking Weyl state we design two materials and present here experimental and theoretical evidence of realization of such a state in one of them, YbMnBi2. We model the time-reversal symmetry breaking observed by magnetization and magneto-optical microscopy measurements by canted antiferromagnetism and find a number of Weyl points. Using angle-resolved photoemission, we directly observe two pairs of Weyl points connected by the Fermi arcs. Our results not only provide a fundamental link between the two areas of physics, but also demonstrate the practical way to design novel materials with exotic properties.

5.
J Phys Chem Lett ; 9(21): 6224-6231, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30336065

RESUMO

The bottleneck of current studies on topological insulators is to identify better materials that can be fabricated into devices more feasibly. To search for novel topological materials, we developed a high-throughput framework that can be utilized to screen for candidates with known crystal structures and further showcase topological properties based on automated construction of Wannier functions. We have applied our methods to ternary compounds of Bi, Sb, and nitrides as a representative sample. The topological properties are characterized by the surface states, verified by auxiliary evaluation of the Z2 topological invariant. We successfully identified seven topological insulators. Our work paves the way to design novel topological materials.

6.
Phys Rev Lett ; 121(24): 246403, 2018 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-30608737

RESUMO

Transitions between topologically distinct electronic states have been predicted in different classes of materials and observed in some. A major goal is the identification of measurable properties that directly expose the topological nature of such transitions. Here, we focus on the giant Rashba material bismuth tellurium iodine which exhibits a pressure-driven phase transition between topological and trivial insulators in three dimensions. We demonstrate that this transition, which proceeds through an intermediate Weyl semimetallic state, is accompanied by a giant enhancement of the Berry curvature dipole which can be probed in transport and optoelectronic experiments. From first-principles calculations, we show that the Berry dipole-a vector along the polar axis of this material-has opposite orientations in the trivial and topological insulating phases and peaks at the insulator-to-Weyl critical points, at which the nonlinear Hall conductivity can increase by over 2 orders of magnitude.

7.
Phys Rev Lett ; 119(10): 107003, 2017 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-28949163

RESUMO

Interfacial phonons between iron-based superconductors (FeSCs) and perovskite substrates have received considerable attention due to the possibility of enhancing preexisting superconductivity. Using scanning tunneling spectroscopy, we studied the correlation between superconductivity and e-ph interaction with interfacial phonons in an iron-based superconductor Sr_{2}VO_{3}FeAs (T_{c}≈33 K) made of alternating FeSC and oxide layers. The quasiparticle interference measurement over regions with systematically different average superconducting gaps due to the e-ph coupling locally modulated by O vacancies in the VO_{2} layer, and supporting self-consistent momentum-dependent Eliashberg calculations provide a unique real-space evidence of the forward-scattering interfacial phonon contribution to the total superconducting pairing.

8.
Phys Rev Lett ; 119(7): 076801, 2017 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-28949688

RESUMO

The hallmark of Weyl semimetals is the existence of open constant-energy contours on their surface-the so-called Fermi arcs-connecting Weyl points. Here, we show that, for time-reversal symmetric realizations of Weyl semimetals, these Fermi arcs, in many cases, coexist with closed Fermi pockets originating from surface Dirac cones pinned to time-reversal invariant momenta. The existence of Fermi pockets is required for certain Fermi-arc connectivities due to additional restrictions imposed by the six Z_{2} topological invariants characterizing a generic time-reversal invariant Weyl semimetal. We show that a change of the Fermi-arc connectivity generally leads to a different topology of the surface Fermi surface and identify the half-Heusler compound LaPtBi under in-plane compressive strain as a material that realizes this surface Lifshitz transition. We also discuss universal features of this coexistence in quasiparticle interference spectra.

9.
Phys Rev Lett ; 116(15): 157203, 2016 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-27127984

RESUMO

Motivated by recent spin- and angular-resolved photoemission (SARPES) measurements of the two-dimensional electronic states confined near the (001) surface of oxygen-deficient SrTiO_{3}, we explore their spin structure by means of ab initio density functional theory (DFT) calculations of slabs. Relativistic nonmagnetic DFT calculations display Rashba-like spin winding with a splitting of a few meV and when surface magnetism on the Ti ions is included, bands become spin-split with an energy difference ∼100 meV at the Γ point, consistent with SARPES findings. While magnetism tends to suppress the effects of the relativistic Rashba interaction, signatures of it are still clearly visible in terms of complex spin textures. Furthermore, we observe an atomic specialization phenomenon, namely, two types of electronic contributions: one is from Ti atoms neighboring the oxygen vacancies that acquire rather large magnetic moments and mostly create in-gap states; another comes from the partly polarized t_{2g} itinerant electrons of Ti atoms lying further away from the oxygen vacancy, which form the two-dimensional electron system and are responsible for the Rashba spin winding and the spin splitting at the Fermi surface.

10.
ACS Nano ; 10(4): 3995-4003, 2016 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-26967061

RESUMO

Compound Bi14Rh3I9 consists of ionic stacks of intermetallic [(Bi4Rh)3I](2+) and insulating [Bi2I8](2-) layers and has been identified to be a weak topological insulator. Scanning tunneling microscopy revealed the robust edge states at all step edges of the cationic layer as a topological fingerprint. However, these edge states are found 0.25 eV below the Fermi level, which is an obstacle for transport experiments. Here, we address this obstacle by comparing results of density functional slab calculations with scanning tunneling spectroscopy and angle-resolved photoemission spectroscopy. We show that the n-type doping of the intermetallic layer is intrinsically caused by the polar surface and is well-screened toward the bulk. In contrast, the anionic "spacer" layer shows a gap at the Fermi level, both on the surface and in the bulk; that is, it is not surface-doped due to iodine desorption. The well-screened surface dipole implies that a buried edge state, probably already below a single spacer layer, is located at the Fermi level. Consequently, a multilayer step covered by a spacer layer could provide access to the transport properties of the topological edge states. In addition, we find a lateral electronic modulation of the topologically nontrivial surface layer, which is traced back to the coupling with the underlying zigzag chain structure of the spacer layer.

11.
Science ; 351(6280): aad3000, 2016 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-27013736

RESUMO

The widespread popularity of density functional theory has given rise to an extensive range of dedicated codes for predicting molecular and crystalline properties. However, each code implements the formalism in a different way, raising questions about the reproducibility of such predictions. We report the results of a community-wide effort that compared 15 solid-state codes, using 40 different potentials or basis set types, to assess the quality of the Perdew-Burke-Ernzerhof equations of state for 71 elemental crystals. We conclude that predictions from recent codes and pseudopotentials agree very well, with pairwise differences that are comparable to those between different high-precision experiments. Older methods, however, have less precise agreement. Our benchmark provides a framework for users and developers to document the precision of new applications and methodological improvements.

12.
Sci Rep ; 6: 20645, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26875525

RESUMO

Recently the presence of topologically protected edge-states in Bi14Rh3I9 was confirmed by scanning tunnelling microscopy consolidating this compound as a weak 3D topological insulator (TI). Here, we present a density-functional-theory-based study on a family of TIs derived from the Bi14Rh3I9 parent structure via substitution of Ru, Pd, Os, Ir and Pt for Rh. Comparative analysis of the band-structures throughout the entire series is done by means of a unified minimalistic tight-binding model that evinces strong similarity between the quantum-spin-Hall (QSH) layer in Bi14Rh3I9 and graphene in terms of Pz-molecular orbitals. Topologically non-trivial energy gaps are found for the Ir-, Rh-, Pt- and Pd-based systems, whereas the Os- and Ru-systems remain trivial. Furthermore, the energy position of the metal d-band centre is identified as the parameter which governs the evolution of the topological character of the band structure through the whole family of TIs. The d-band position is shown to correlate with the chemical bonding within the QSH layers, thus revealing how the chemical nature of the constituents affects the topological band character.

13.
Sci Rep ; 5: 11280, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26169486

RESUMO

Arsenic vacancies in LaFeAsO-derived superconductors are nominally non-magnetic defects. However, we find from a microscopic theory in terms of an appropriately modified Anderson-Wolff model that in their vicinity local magnetic moments form. They can arise because removing an arsenic atom breaks four strong, covalent bonds with the neighboring iron atoms. The moments emerging around an arsenic vacancy orient ferromagnetically and cause a substantial enhancement of the paramagnetic susceptibility in both the normal and superconducting state. The qualitative model description is supported by first principles band structure calculations of the As-vacancy related defect spectrum within a larger supercell.

14.
Phys Rev Lett ; 114(9): 096402, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25793832

RESUMO

Fractionalization of an electronic quasiparticle into spin, charge, and orbital parts is a fundamental and characteristic property of interacting electrons in one dimension. However, real materials are never strictly one dimensional and the fractionalization phenomena are hard to observe. Here we studied the spin and orbital excitations of the anisotropic ladder material CaCu_{2}O_{3}, whose electronic structure is not one dimensional. Combining high-resolution resonant inelastic x-ray scattering experiments with theoretical model calculations, we show that (i) spin-orbital fractionalization occurs in CaCu_{2}O_{3} along the leg direction x through the xz orbital channel as in a 1D system, and (ii) no fractionalization is observed for the xy orbital, which extends in both leg and rung direction, contrary to a 1D system. We conclude that the directional character of the orbital hopping can select different degrees of dimensionality. Using additional model calculations, we show that spin-orbital separation is generally far more robust than the spin-charge separation. This is not only due to the already mentioned selection realized by the orbital hopping, but also due to the fact that spinons are faster than the orbitons.


Assuntos
Compostos de Cálcio/química , Cobre/química , Modelos Teóricos , Óxidos/química , Anisotropia , Elétrons
15.
J Phys Condens Matter ; 26(1): 015501, 2014 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-24292279

RESUMO

High-sensitivity (27)Al nuclear magnetic resonance (NMR) measurements of aluminum metal under hydrostatic pressure of up to 10.1 GPa reveal an unexpected negative curvature in the pressure dependence of the electronic density of states measured through shift and relaxation, which violates free electron behavior. A careful analysis of the Fermiology of aluminum shows that pressure induces an electronic topological transition (Lifshitz transition) that is responsible for the measured change in the density of states. The experiments also reveal a sudden increase in the NMR linewidth above 4.2 GPa from quadrupole interaction, which is not in agreement with the metal's cubic symmetry.


Assuntos
Alumínio/química , Eletrônica , Elétrons , Espectroscopia de Ressonância Magnética , Transição de Fase , Transporte de Elétrons , Modelos Moleculares , Pressão
17.
Nat Mater ; 12(5): 422-5, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23475262

RESUMO

Commonly, materials are classified as either electrical conductors or insulators. The theoretical discovery of topological insulators has fundamentally challenged this dichotomy. In a topological insulator, the spin-orbit interaction generates a non-trivial topology of the electronic band structure dictating that its bulk is perfectly insulating, whereas its surface is fully conducting. The first topological insulator candidate material put forward--graphene--is of limited practical use because its weak spin-orbit interactions produce a bandgap of ~0.01 K. Recent reexaminations of Bi2Se3 and Bi2Te3, however, have firmly categorized these materials as strong three-dimensional topological insulators. We have synthesized the first bulk material belonging to an entirely different, weak, topological class, built from stacks of two-dimensional topological insulators: Bi14Rh3I9. Its Bi-Rh sheets are graphene analogues, but with a honeycomb net composed of RhBi8 cubes rather than carbon atoms. The strong bismuth-related spin-orbit interaction renders each graphene-like layer a topological insulator with a 2,400 K bandgap.

18.
Phys Rev Lett ; 106(2): 027002, 2011 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-21405247

RESUMO

Low energy electron diffraction (LEED) experiments, LEED simulations, and finite slab density functional calculations are combined to study the cleavage surface of Co doped BaFe(2-x)Co(x)As2 (x = 0.1,0.17). We demonstrate that the energy dependence of the LEED data can only be understood from a terminating 1/2 Ba layer accompanied by distortions of the underlying As-Fe2-As block. As a result, surface-related Fe 3d states are present in the electronic structure, which we identify in angle resolved photoemission spectroscopy (ARPES) experiments. The close proximity of the surface-related states to the bulk bands inevitably leads to broadening of the ARPES signals, which excludes the use of the BaFe(2-x)Co(x)As2 system for accurate determination of self-energies using ARPES.

19.
Phys Rev Lett ; 103(18): 187201, 2009 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-19905826

RESUMO

It is demonstrated by means of density functional and ab initio quantum chemical calculations, that transition-metal-carbon systems have the potential to enhance the presently available area density of magnetic recording by 3 orders of magnitude. As a model system, Co2 benzene with a diameter of 0.5 nm is investigated. It shows a magnetic anisotropy of the order of 0.1 eV per molecule, large enough to store permanently 1 bit of information at temperatures considerably larger than 4 K. A similar performance can be expected, if cobalt dimers are deposited on graphene or on graphite.

20.
Phys Rev Lett ; 100(23): 237202, 2008 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-18643539

RESUMO

Essentially all undoped cuprates exhibit a quasiplanar, fourfold Cu-O coordination responsible for the magnetically active antibonding 3d(x(2)-y(2)) like state. Here, we present an electronic structure study for CuSb(2)O(6) that reveals, in contrast, a half-filled 3d(3z(2)-r(2)) orbital. This hitherto unobserved ground state originates from a competition of in- and out-of-plaquette orbitals where the strong Coulomb repulsion drives the surprising and unique orbital ordering. This, in turn, gives rise to an unexpected quasi-one-dimensional magnetic behavior. Our results provide a consistent explanation of recent thermodynamical and neutron diffraction measurements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...